skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Prather, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. We present gridded surface air quality datasets over South Korea for three key species – ozone (O3), carbon monoxide (CO), and nitrogen oxides (NOx) during the timeframe of the Korea–US Air Quality (KORUS–AQ) mission (May–June 2016). The tenth degree hourly averaged abundances are constructed from the 300+ air quality network sites using inverse distance weighting with simple declustering. Cross–comparing the interpolated fields against the site data that was used to create them reveals high prediction skill for O3 (80 %) throughout South Korea, and moderate skill (60 %) for CO and NOx on average in densely observed regions after individual mean bias corrections. The gridded O3 and CO interpolations predict the NASA DC–8 observations in the planetary boundary layer (PBL) with high skill (80 %) in the Seoul Metropolitan Area (SMA) after subtracting the mean bias. DC–8 NOx observations were much less predictable on account of consistently negative vertical gradients within the PBL. Our gridded products capture the mean and variability of O3 throughout South Korea, and of CO and surface NOx in most site–dense urban centres (SMA, Cheongju, Gwangju, Daegu, Changwon, and Busan). 
    more » « less
  2. The decay of methyl chloroform, a banned ozone-depleting substance, has provided a clear observational metric of mean tropospheric hydroxyl radical (OH) abundance. Almost all current global chemistry models calculate about 15% too much OH and thus too rapid methane loss. Methane is a short-lived climate forcer, critical to achieving global warming targets, and this error affects our model projections of climate change. New observations of water vapor absorption in the ultraviolet region (290 to 350 nanometers) imply reductions in sunlight with key photolysis rates decreasing by 8 to 12% in the near-surface tropical atmosphere. Incorporation of this new mechanism in a chemistry-transport model reduces OH and methane loss by only 4%, but combined with other proposed mechanisms, such as tropospheric halogen chemistry (7%), we may be able to resolve this conundrum. 
    more » « less
  3. The lifetime of tropospheric O3 is difficult to quantify because we model O3 as a secondary pollutant, without direct emissions. For other reactive greenhouse gases like CH4 and N2O, we readily model lifetimes and timescales that include chemical feedbacks based on direct emissions. Here, we devise a set of artificial experiments with a chemistry-transport model where O3 is directly emitted into the atmosphere at a quantified rate. We create 3 primary emission patterns for O3, mimicking secondary production by surface industrial pollution, that by aviation, and primary injection through stratosphere–troposphere exchange (STE). The perturbation lifetimes for these O3 sources includes chemical feedbacks and varies from 6 to 27 days depending on source location and season. Previous studies derived lifetimes around 24 days estimated from the mean odd-oxygen loss frequency. The timescales for decay of excess O3 varies from 10 to 20 days in northern hemisphere summer to 30 to 40 days in northern hemisphere winter. For each season, we identify a single O3 chemical mode applying to all experiments. Understanding how O3 sources accumulate (the lifetime) and disperse (decay timescale) provides some insight into how changes in pollution emissions, climate, and stratospheric O3 depletion over this century will alter tropospheric O3. This work incidentally found 2 distinct mistakes in how we diagnose tropospheric O3, but not how we model it. First, the chemical pattern of an O3 perturbation or decay mode does not resemble our traditional view of the odd-oxygen family of species that includes NO2. Instead, a positive O3 perturbation is accompanied by a decrease in NO2. Second, heretofore we diagnosed the importance of STE flux to tropospheric O3 with a synthetic “tagged” tracer O3S, which had full stratospheric chemistry and linear tropospheric loss based on odd-oxygen loss rates. These O3S studies predicted that about 40% of tropospheric O3 was of stratospheric origin, but our lifetime and decay experiments show clearly that STE fluxes add about 8% to tropospheric O3, providing further evidence that tagged tracers do not work when the tracer is a major species with chemical feedbacks on its loss rates, as shown previously for CH4. 
    more » « less
  4. Abstract With increasing global interest in molecular hydrogen to replace fossil fuels, more attention is being paid to potential leakages of hydrogen into the atmosphere and its environmental consequences. Hydrogen is not directly a greenhouse gas, but its chemical reactions change the abundances of the greenhouse gases methane, ozone, and stratospheric water vapor, as well as aerosols. Here, we use a model ensemble of five global atmospheric chemistry models to estimate the 100-year time-horizon Global Warming Potential (GWP100) of hydrogen. We estimate a hydrogen GWP100 of 11.6 ± 2.8 (one standard deviation). The uncertainty range covers soil uptake, photochemical production of hydrogen, the lifetimes of hydrogen and methane, and the hydroxyl radical feedback on methane and hydrogen. The hydrogen-induced changes are robust across the different models. It will be important to keep hydrogen leakages at a minimum to accomplish the benefits of switching to a hydrogen economy. 
    more » « less
  5. Abstract Nitrous oxide (N2O) is a greenhouse gas and stratospheric ozone‐depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N2O‐depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at eight remote air sampling sites for modern and pre‐industrial periods. Models show general agreement on the seasonal phasing of zonal‐average N2O fluxes for most sites, but seasonal peak‐to‐peak amplitudes differ several‐fold across models. The modeled seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN2O, inferred by the difference between the surface‐troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre‐industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN2O seasonality. Considering the large model spread, in situ aN2O observations and atmospheric transport‐chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon‐nitrogen cycles under ongoing global warming. 
    more » « less
  6. Abstract. Using Aura Microwave Limb Sounder satellite observationsof stratospheric nitrous oxide (N2O), ozone, and temperature from 2005through 2021, we calculate the atmospheric lifetime of N2O to bedecreasing at a rate of −2.1 ± 1.2 %/decade. This decrease is occurring because the N2O abundances in the middle tropical stratosphere, where N2O is photochemically destroyed, are increasing ata faster rate than the bulk N2O in the lower atmosphere. The causeappears to be a more vigorous stratospheric circulation, which modelspredict to be a result of climate change. If the observed trends in lifetime and implied emissions continue, then the change in N2O over the21st century will be 27 % less than those projected with a fixed lifetime, and the impact on global warming and ozone depletion will beproportionately lessened. Because global warming is caused in part byN2O, this finding is an example of a negative climate–chemistry feedback. 
    more » « less
  7. Abstract. Stratosphere–troposphere exchange (STE) is an important source oftropospheric ozone, affecting all of atmospheric chemistry, climate, and air quality. The study of impacts needs STE fluxes to be resolved by latitude and month, and for this, we rely on global chemistry models, whose results diverge greatly. Overall, we lack guidance from model–measurement metrics that inform us about processes and patterns related to the STE flux of ozone (O3). In this work, we use modeled tracers (N2O and CFCl3), whose distributions and budgets can be constrained by satellite and surfaceobservations, allowing us to follow stratospheric signals across thetropopause. The satellite-derived photochemical loss of N2O on annualand quasi-biennial cycles can be matched by the models. The STE flux ofN2O-depleted air in our chemistry transport model drives surfacevariability that closely matches observed fluctuations on both annual andquasi-biennial cycles, confirming the modeled flux. The observed tracercorrelations between N2O and O3 in the lowermost stratosphereprovide a hemispheric scaling of the N2O STE flux to that ofO3. For N2O and CFCl3, we model greater southern hemisphericSTE fluxes, a result supported by some metrics, but counter to the prevailing theory of wave-driven stratospheric circulation. The STE flux of O3, however, is predominantly northern hemispheric, but evidence shows that this is caused by the Antarctic ozone hole reducing southern hemispheric O3 STE by 14 %. Our best estimate of the current STE O3 flux based on a range of constraints is 400 Tg(O3) yr−1, with a 1σ uncertainty of ±15 % and with a NH : SH ratio ranging from 50:50 to 60:40. We identify a range of observational metrics that can better constrain the modeled STE O3 flux in future assessments. 
    more » « less
  8. Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023). 
    more » « less
  9. Biomass burning drives changes in greenhouse gases, climate-forcing aerosols, and global atmospheric chemistry. There is controversy about the magnitude and timing of changes in biomass burning emissions on millennial time scales from preindustrial to present and about the relative importance of climate change and human activities as the underlying cause. Biomass burning is one of two notable sources of ethane in the preindustrial atmosphere. Here, we present ice core ethane measurements from Antarctica and Greenland that contain information about changes in biomass burning emissions since 1000 CE (Common Era). The biomass burning emissions of ethane during the Medieval Period (1000–1500 CE) were higher than present day and declined sharply to a minimum during the cooler Little Ice Age (1600–1800 CE). Assuming that preindustrial atmospheric reactivity and transport were the same as in the modern atmosphere, we estimate that biomass burning emissions decreased by 30 to 45% from the Medieval Period to the Little Ice Age. The timing and magnitude of this decline in biomass burning emissions is consistent with that inferred from ice core methane stable carbon isotope ratios but inconsistent with histories based on sedimentary charcoal and ice core carbon monoxide measurements. This study demonstrates that biomass burning emissions have exceeded modern levels in the past and may be highly sensitive to changes in climate. 
    more » « less